Расчет на прочность при переменных напряжениях. Расчеты на прочность при напряжениях, переменных во времени Определение коэффициента запаса при переменных напряжениях

Расчеты по нормальным и касательным напряжениям прово­дятся аналогично.

Расчетные коэффициенты выбираются по специальным табли­цам.

При расчетах определяют запасы прочности по нормальным и касательным напряжениям.

Запас прочности по нормальным напряжениям:

Запас прочности по касательным напряжениям:

где σ а - амплитуда цикла нормальных напряжений; τ а - ампли­туда цикла касательных напряжений.

Полученные запасы прочности сравнивают с допускаемыми. Представленный расчет является проверочным и проводится при конструировании детали.

Контрольные вопросы и задания

1. Изобразите графики симметричного и отнулевого циклов из­менения напряжений при повторно-переменных напряжениях.

2. Перечислите характеристики циклов, покажите на графиках среднее напряжение и амплитуду цикла. Что характеризует коэф­фициент асимметрии цикла?

3. Опишите характер усталостных разрушений.

4. Почему прочность при повторно-переменных напряжениях
ниже, чем при постоянных (статических)?

5. Что называют пределом выносливости? Как строится кривая усталости?

6. Перечислите факторы, влияющие на сопротивление устало­сти.


306 Практическое занятие 6

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО РАЗДЕЛУ

«Сопротивление материалов»

Практическое занятие 6

Тема 2.2. Расчеты на прочность и жесткость

При растяжении и сжатии

Знать порядок расчетов на прочность и жесткость и расчет­ные формулы.

Уметь проводить проектировочные и проверочные расчеты на прочность и жесткость при растяжении и сжатии.

Необходимые формулы

Нормальное напряжение

где N - продольная сила; А -площадь поперечного сечения.

Удлинение (укорочение) бруса

Е - модуль упругости; I - начальная длина стержня.

Допускаемое напряжение

[ s ] - допускаемый запас прочности.

Условие прочности при растяжении и сжатии:

Примеры расчетов на прочность и жесткость

Пример 1. Груз закреплен на стержнях и находится в равно­весии (рис. П6.1). Материал стержней - сталь, допускаемое напря­жение 160 МПа. Вес груза 100 кН. Длина стержней: первого - 2 м, второго - 1м. Определить размеры поперечного сечения и удлине­ние стержней. Форма поперечного сечения - круг.


Практическое занятие 6 307

Решение

1. Определить нагрузку на стержни. Рассмотрим равновесие
точки В, определим реакции стержней. По пятой аксиоме статистики (закону действия и противодействия) реакция стержня численно
равна нагрузке на стержень.

Наносим реакции связей, действующих в точке В. Освобождаем точку В от связей (рис. П6.1).

Выбираем систему координат так, чтобы одна из осей коорди­нат совпала с неизвестной силой (рис. П6.1б).

Составим систему уравнений равновесия для точки В:

Решаем систему уравнений и определяем реакции стержней.

R 1 = R 2 cos60°; R 1= 115,5 ∙ 0,5 = 57,4кН.

Направление реакций выбрано верно. Оба стержня сжаты. На­грузки на стержни: F 1= 57,4кН; F 2 = 115, 5 кН.

2. Определяем потребную площадь поперечного сечения стерж­ней из условий прочности.

Условие прочности на сжатие: σ = N / A [σ] , откуда

Стержень 1 (N 1 = F 1):


308 Практическое занятие 6

Полученные диаметры округляем: d 1 = 25мм, d 2= 32 мм.

3. Определяем удлинение стержней Δ l = ----- .

Укорочение стержня 1:

Укорочение стержня 2:

Пример 2. Однородная жесткая плита с силой тяжести 10 кН, нагруженная силой F = 4,5 кН и моментом т = ЗкН∙м, оперта в точке А и подвешена на стержне ВС (рис. П6.2). Подобрать сечение стержня в виде швеллера и определить его удлинение, если длина стержня 1м, материал - сталь, предел текучести 570 МПа, запас прочности для материала 1,5.

Решение

1. Определить усилие в стержне под действием внешних сил. Система находится в равновесии, можно использовать уравне­ние равновесия для плиты: ∑т А = 0.

Rb - реакция стержня, реакции шарнира А не рассматриваем.


Практическое занятие 6 309

По третьему закону динамики ре­акция в стержне равна силе, действу­ющей от стержня на плиту. Усилие в стержне равно 14 кН.

2. По условию прочности определяем потребную величину площади попе­
речного сечения: о = N / A ^ [а], откуда А > N /[ a ].

Допускаемое напряжение для материала стержня

Следовательно,

3. Подбираем сечение стержня по ГОСТ (Приложение 1).
Минимальная площадь швеллера 6,16 см 2 (№ 5; ГОСТ 8240-89).
Целесообразнее использовать равнополочный уголок № 2

(d = Змм),- площадь поперечного сечения которого 1,13см 2 (ГОСТ 8509-86).

4. Определить удлинение стержня:

На практическом занятии выполняется расчетно-графическая работа и проводится тестовый опрос.

Расчетно-графическая работа

Задание 1. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F 1, F 2 , F 3- Площади поперечных сечений А А 2 .


310 Практическое занятие 6

Задание 2. Балка АВ, на которую действуют указанные на­грузки, удерживается в равновесии тягой ВС. Определить разме­ры поперечного сечения тяги для двух случаев: 1) сечение - круг; 2) сечение - уголок равнополочный по ГОСТ 8509-86. Принять [σ] = 160 МПа. Собственный вес конструкции не учитывать.


Практическое занятие 6 311

При защите работы ответить на вопросы тестового задания.


312 Практическое занятие 6

Тема 2.2. Растяжение и сжатие.

Расчеты на прочность и жесткость


Практическое занятие 7 313

Практическое занятие 7

В подавляющем большинстве случаев расчеты на прочность деталей, работающих при переменных напряжениях, выполняют как проверочные. Это связано в первую очередь с тем, что общий коэффициент снижения предела выносливости или в процессе конструирования детали можно выбрать лишь ориентировочно, так как у расчетчика (конструктора) на этой стадии работы имеются лишь весьма приближенные представления о размерах и форме детали. Проектный расчет детали, служащий для определения ее основных размеров, обычно выполняется приближенно без учета переменности напряжений, но по пониженным допускаемым напряжениям.

После выполнения рабочего чертежа детали производится ее уточненный проверочный расчет с учетом переменности напряжений, а также конструктивных и технологических факторов, влияющих на усталостную прочность детали. При этом определяют расчетные коэффициенты запаса прочности для одного или нескольких предположительно опасных сечений детали. Эти коэффициенты запаса сопоставляют с теми, которые назначают или рекомендуют для деталей, аналогичных проектируемой при заданных условиях ее эксплуатации. При таком проверочном расчете условие прочности имеет вид

Величина требуемого коэффициента запаса прочности зависит от целого ряда обстоятельств, основными из которых являются: назначение детали (степень ее ответственности), условия работы; точность определения действующих на нее нагрузок, надежность сведений о механических свойствах ее материала, значениях коэффициентов концентрации напряжений и т. п. Обычно

В случае, если расчетный коэффициент запаса прочности ниже требуемого (т. е. прочность детали недостаточна) или значительно выше требуемого (т. е. деталь неэкономична), приходится вносить те или иные изменения в размеры и конструкцию детали, а в отдельных случаях даже изменять ее материал.

Рассмотрим определение коэффициентов запаса прочности при одноосном напряженном состоянии и при чистом сдвиге. Первый из этих видов напряженного состояния, как известно, возникает при растяжении (сжатии), прямом или косом изгибе и совместном изгибе и растяжении (или сжатии) бруса. Напомним, что касательные напряжения при изгибе (прямом и косом) и сочетании изгиба с осевым нагружением в опасной точке бруса, как правило, невелики и при расчете на прочность ими пренебрегают, т. е. считают, что в опасной точке возникает одноосное напряженное состояние.

Чистый сдвиг возникает в точках работающего на кручение бруса круглого поперечного сечения.

В большинстве случаев коэффициент запаса прочности определяют в предположении, что рабочий цикл напряжений, возникающих в рассчитываемой детали при ее эксплуатации, подобен предельному циклу, т. е. коэффициенты асимметрии R и характеристики рабочего и предельного циклов одинаковы.

Наиболее просто коэффициент запаса прочности можно определить в случае симметричного цикла изменения напряжений, так как пределы выносливости материала при таких циклах обычно известны, а пределы выносливости рассчитываемых деталей можно вычислить по взятым из справочников значениям коэффициентов снижения пределов выносливости Коэффициент запаса прочности представляет собой отношение предела выносливости, определенного для детали, к номинальному значению максимального напряжения, возникающего в опасной точке детали. Номинальным является значение напряжения, определенное по основным формулам сопротивления материалов, т. е. без учета факторов, влияющих на величину предела выносливости (концентрации напряжений и т. п.).

Таким образом, для определения коэффициента запаса прочности при симметричных циклах получаем следующие зависимости:

при изгибе

при растяжении-сжатии

при кручении

При определении коэффициента запаса прочности в случае асимметричного цикла возникают затруднения, связанные с отсутствием экспериментальных данных, необходимых для построения участка линии предельных напряжений (см. рис. 7.15). Заметим, что практически нет надобности в построении всей диаграммы предельных амплитуд, так как для циклов с пределами выносливости, большими предела текучести, коэффициент запаса должен определяться по текучести (для пластичных материалов), т. е. расчет должен выполняться, как в случае статического действия нагрузки.

При наличии экспериментально полученного участка AD предельной кривой коэффициент запаса можно бы определить графоаналитическим способом. Как правило, эти экспериментальные данные отсутствуют и кривую AD приближенно заменяют прямой, построенной по каким-либо двум точкам, координаты которых определены экспериментально. В результате получают так называемую схематизированную диаграмму предельных амплитуд, которой и пользуются при практических расчетах на прочность.

Рассмотрим основные способы схематизации безопасной зоны диаграммы предельных амплитуд.

В современной расчетной практике наиболее часто применяется диаграмма Серенсена-Кинасошвили, при построении которой участок AD заменяют прямой линией, проведенной через точки А и С, соответствующие предельным симметричному и отнулевому циклам (рис. 9.15, а). Достоинством этого способа является его относительно высокая точность (аппроксимирующая прямая АС, близка к кривой недостаток его заключается в том, что необходимо кроме величины предела выносливости при симметричном цикле иметь опытные данные о величине предела выносливости ) также и при отнулевом цикле.

При пользовании этой диаграммой коэффициент запаса определяется по выносливости (усталостному разрушению), если луч циклов, подобных заданному, пересекает прямую и по текучести, - если указанный луч пересекает линию

Несколько меньшую, но во многих случаях достаточную для практических расчетов точность дает метод, основанный на проксимации участка AD предельной кривой отрезком прямой линии (рис. 9.15,б), проведенной через точки А (соответствующую симметричному циклу) и В (соответствующую предельным постоянным напряжениям).

Достоинством рассматриваемого способа является меньшее по сравнению с предыдущим количество требуемых экспериментальных данных (не нужны данные о величине предела выносливости при отнулевом цикле). Какой из коэффициентов запаса, по усталостному разрушению или по текучести, меньше, определяют так же, как и в предыдущем случае.

В третьем типе схематизированных диаграмм (рис. 9.15, в) аппроксимирующую прямую проводят через точку А и некоторую точку Р, абсцисса которой определяется в результате обработки имеющихся экспериментально полученных диаграмм предельных напряжений. Для стали с достаточной точностью можно принимать, что отрезок OP - s равен Точность таких диаграмм почти не отличается от точности диаграмм, построенных по методу Серенсена - Кинасошвили.

Особенно проста схематизированная диаграмма, в которой безопасная зона ограничена прямой AL (рис. 9.15, г). Легко видеть, что расчет по такой диаграмме весьма неэкономичен, так как на схематизированной диаграмме линия предельных напряжений расположена значительно ниже действительной линии предельных напряжений.

Кроме того, такой расчет не имеет определенного физического смысла, так как неизвестно, какой коэффициент запаса, по усталости или по текучести, будет определен. Несмотря на указанные серьезные недостатки, диаграмма по рис. 9.15, а иногда используется в зарубежной практике; в отечественной практике в последние годы такая диаграмма не применяется.

Выведем аналитическое выражение для определения коэффициента запаса прочности по усталостному разрушению на основании рассмотренных схематизированных диаграмм предельных амплитуд. На первом этапе вывода не будем учитывать влияние факторов, снижающих предел выносливости, т. е. сначала получим формулу, пригодную для нормальных лабораторных образцов.

Допустим, что точка N, изображающая рабочий цикл напряжений, находится в области (рис. 10.15) и, следовательно, при возрастании напряжений до величины, определяемой точкой наступит усталостное разрушение (как уже указывалось, предполагается, что рабочий и предельный циклы подобны). Коэффициент запаса по усталостному разрушению для цикла, изображенного точкой N, определяется как отношение

Проведем через точку N прямую , параллельную прямой и горизонтальную прямую NE.

Из подобия треугольников следует, что

Как следует из рис. 10.15,

Подставим полученные значения величин ОА и в равенство (а):

Аналогично в случае переменных касательных напряжений

Значения зависят от принятого для расчета типа схематизированной диаграммы предельных напряжений и от материала детали.

Так, если принять диаграмму Серенсена - Кинасошвили (см. рис. 9.15, а), то

аналогично,

По схематизированной диаграмме, изображенной на рис. 9.15, б,

(20.15)

аналогично,

(21.15)

Значения и при расчете по методу Серенсена - Кинасошвили можно принимать по приведенным данным (табл. 1.15).

Таблица 1.15

Значения коэффициентов для стали

При определении коэффициента запаса прочности для конкретной детали надо учесть влияние коэффициента снижения предела выносливости Опыты показывают, что концентрация напряжений, масштабный эффект и состояние поверхности отражаются только на величинах предельных амплитуд и практически не влияют на величины предельных средних напряжений. Поэтому в расчетной практике принято коэффициент снижения предела выносливости относить только к амплитудному напряжению цикла. Тогда окончательные формулы для определения коэффициентов запаса прочности по усталостному разрушению будут иметь вид: при изгибе

(22.15)

при кручении

(23.15)

При растяжении-сжатии следует пользоваться формулой (22.15), но вместо подставлять в нее предел выносливости при симметричном цикле растяжения-сжатия.

Формулы (22.15), (23.15) действительны при всех указанных способах схематизации диаграмм предельных напряжений; изменяются лишь величины коэффициентов

Формула (22.15) получена для циклов с положительными средними напряжениями для циклов с отрицательными (сжимающими) средними напряжениями следует полагать т. е. исходить из предположения о том, что в зоне сжатия линия предельных напряжений параллельна оси абсцисс.

Переменные напряжения в деталях машин различаются по виду циклов и характеру изменения цикла во времени. Циклом напряжений называют совокупность последовательных значений напряжений за один период их изменения при регулярном нагружении. На рис.4.2 показаны различные виды циклов переменных напряжений, характеризуемые следующими параметрами:

среднее напряжение цикла, выражающее постоянную (положительную или отрицательную) составляющую цикла напряжения:

амплитуда напряжений цикла, выражающая наибольшее положительное значение переменной составляющей цикла напряжений:

где σ m ах и σ min - максимальное и минимальное напряжения цикла, соответствующие наибольшему и наименьшему напряжениям цикла.

Отношение минимального напряжения цикла к максимальному называют коэффициентом асимметрии цикла напряжений:

Симметричным называется цикл, когда максимальное и минимальное напряжения равны по абсолютному значению и противоположны по знаку. Симметричный цикл является знакопеременным и имеет следующие параметры: σ а = σ m ах = σ min ; σ т = 0; R = - 1. Наиболее распространенный пример симметричного цикла напряжений - изгиб вращающегося вала (изгиб при вращении). Пределы выносливости, соответствующие симметричному циклу, имеют индекс «-1» (σ -1 ; τ -1).

Асимметричным называется цикл, у которого максимальное и минимальное напряжения имеют разные абсолютные значения. Для асимметричного цикла напряжений σ max = σ m + σ a ; σ min = σ m - σ a ; R ≠ - 1 Асимметричные циклы напряжений относятся к знакопеременным, если напряжения изменяются по значению и по знаку. Цикл напряжений, изменяющихся только по абсолютному значению, называется знакопостоянным. Пределы выносливости, соответствующие асимметричному циклу, обозначаются индексом «R» (σ R ; τ R).

Характерным асимметричным циклом является отнулевой цикл напряжений, к которому относятся знакопостоянные циклы напряжений, изменяющиеся при растяжении от нуля до максимума (σ min = 0) или при сжатии - от нуля до минимума (σ max = 0). При растяжении отнулевой цикл напряжений характеризуется следующими параметрами: σ m =σ a = σ max /2; R = 0. Предел выносливости отнулевого цикла обозначается индексом «0» (σ 0 ; τ 0). Отнулевые циклы напряжений возникают в зубьях шестерен и цепных звездочек, которые в процессе работы нагружаются при входе в зацепление и полностью разгружаются при выходе из него.

Сопротивление усталости зависит не только от вида действующих циклов напряжений, но и от характера изменения напряжений во времени. При стационарном нагружении значения амплитуды и среднего напряжения цикла остаются неизменными во времени. Буровые машины и оборудование, как уже отмечалось, преимущественно работают при нестационарном нагружении.

Амплитуда и среднее напряжение циклов могут иметь ступенчатый либо непрерывный характер изменения (рис. 4.3).

Количественные характеристики сопротивляемости материала действию переменных напряжений определяют путем испытания на усталость 15-20 одинаковых образцов диаметром 7-10 мм, имеющих полированную поверхность. Испытания проводят при разных уровнях напряжений. По полученным результатам строят график кривой усталости (рис. 4.4,а). По оси ординат графика откладывают максимальное напряжение или амплитуду напряжений цикла, при которых испытывался данный образец, а по оси абсцисс - число циклов N перемен напряжений, которое образец выдержал до разрушения. Полученная кривая характеризует зависимость между напряжениями и циклической долговечностью одинаковых образцов при постоянных среднем напряжении цикла либо коэффициенте асимметрии цикла.

Для большинства сталей при испытаниях на воздухе кривая усталости, начиная с числа циклов N = 10 6 ÷10 7 , становится горизонтальной и образцы, выдержавшие указанное число циклов, не разрушаются при дальнейшем практически неограниченном увеличении числа циклов нагружения. Поэтому испытания сталей прекращают при достижении 10 млн. циклов, составляющих базу испытаний N б. Максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение до базы испытаний, называют пределом выносливости . Для надежной оценки предела выносливости число неразрушившихся образцов при данном уровне переменных напряжений должно быть не менее шести.

Наиболее простыми и поэтому более распространенными являются испытания на усталость при симметричном цикле напряжений (круговой изгиб).

Испытания на усталость при асимметричном цикле напряжений проводят на специальных испытательных машинах. Кривые усталости, построенные в логарифмических координатах

(рис. 4.4,б), представляют собой наклонную и горизонтальную прямые. Для расчетов на прочность левую наклонную часть кривой усталости представляют в виде

где σ - действующее напряжение; т - показатель наклона кривой усталости; N - число циклов напряжений, выдержанных до усталостного разрушения (циклическая долговечность); σ -1 - предел выносливости; N 0 - число циклов, соответствующее точке перелома кривой усталости, представляемой двумя прямыми линиями.

Величина N 0 в большинстве случаев колеблется в пределах 10 6 -3∙10 6 циклов. В расчетах на прочность при переменных напряжениях, когда отсутствуют данные усталостных испытаний, можно принять в среднем N=2∙10 6 циклов .

Показатель наклона кривой усталости

для деталей изменяется от 3 до 20, причем с ростом эффективного коэффициента концентрации напряжений замечена тенденция к снижению т . Приближенно можно принять

где с =12 - для сварных соединений; с = 12÷20- для деталей из углеродистых сталей; с = 20÷30 - для деталей из легированных сталей.

Таблица 4.4

Из уравнения кривой усталости определяется циклическая долговечность N при действии напряжений σ, превышающих предел усталости σ -1

Значения пределов выносливости, полученные в результате испытаний на усталость, даются в справочниках по машиностроительным материалам. Соотношения между пределами прочности и выносливости, установленные на основе статистических данных приведены в табл. 4.5.

Таблица 4.5

Вид нагружения

Стальные

прокат и поковка

Стальное литье

σ -1 = 0,47σ в

σ -1 = 0,38 σ в

Растяжение-сжатие

σ -1 p = 0,35σ в

σ -1 = 0,28 σ в

Кручение

τ -1 = 0,27 σ в

τ -1 = 0,22σ в

Предел выносливости деталей ниже предела выносливости стандартных лабораторных образцов, используемых при испытании машиностроительных материалов на усталость. Снижение предела выносливости обусловлено влиянием концентрации напряжений, а также абсолютных размеров поперечного сечения и состояния поверхности деталей. Значения предела выносливости деталей определяются путем натурных испытаний либо по справочным расчетно-экспериментальным данным, устанавливающим влияние указанных факторов на сопротивление деталей усталости.

Натурными испытаниями обычно пользуются для определения пределов выносливости широко распространенных стандартных изделий и отдельных наиболее ответственных узлов и деталей. Так, на основе натурных испытаний установлены пределы выносливости бурильных труб, втулочно-роликовых цепей буровых установок, талевых канатов, подшипников и некоторых других стандартных изделий, применяемых в буровых машинах и оборудовании. В связи со сложностью натурных испытаний на усталость в практических расчетах на прочность преимущественно пользуются расчетно-экспериментальными данными, на основе которых предел выносливости детали определяется из выражения

где σ -1д - предел выносливости детали; σ -1 - предел выносливости стандартных лабораторных образцов из материала детали; К - коэффициент снижения предела выносливости:

Здесь К σ - эффективный коэффициент концентрации напряжений; К F - коэффициент влияния шероховатости поверхности; К d - коэффициент влияния абсолютных размеров поперечного сечения: K υ - коэффициент влияния поверхностного упрочнения.

Значения эффективных коэффициентов концентрации напряжений и коэффициентов влияния поверхностного упрочнения, полученные по расчетно-экспериментальным данным, приведены в табл. 4.1 и 4.2.

Коэффициент влияния абсолютных размеров поперечного сечения определяется отношением предела выносливости гладких образцов диаметром d к пределу выносливости гладких лабораторных образцов диаметром 7-10 мм:

где σ -1 d - предел выносливости гладкого образца (детали) диаметром d; σ -1 - предел выносливости материала, определяемый на стандартных гладких образцах диаметром 7-10 мм.

Опытные данные показывают, что с увеличением поперечных размеров предел выносливости детали снижается. Это объясняется статистической теорией усталостных разрушений, согласно которой при увеличении размеров возрастает вероятность наличия в деталях внутренних дефектов в зонах повышенных напряжений - масштабный эффект. Проявлению масштабного эффекта способствуют ухудшение однородности материала, а также трудность контроля и обеспечения стабильности процессов изготовления деталей больших размеров. Масштабный эффект зависит главным образом от поперечных размеров и в меньшей мере от длины детали.

Влитых деталях и материалах, имеющих неметаллические включения, поры и другие внутренние и внешние дефекты, масштабный эффект проявляется больше. Легированные стали более чувствительны к внутренним и внешним дефектам, и поэтому для них влияние абсолютных размеров проявляется значительнее, чем для углеродистых сталей. В расчетах на прочность значения коэффициентов влияния абсолютных размеров поперечного сечения выбираются по графику (рис.4.5).

Шероховатость поверхности, окалины и коррозия существенно влияют на сопротивление усталости. На рис. 4.6 показан экспериментальный график, характеризующий изменение предела выносливости деталей при различном качестве обработки и состоянии поверхности. Коэффициент влияния шероховатости определяется отношением предела выносливости гладких образцов с поверхностью не грубее R a = 0,32 по ГОСТ 2789-73 к пределу выносливости образцов с данной шероховатостью поверхности:

где σ -1 - предел выносливости тщательно полированных образцов; σ -1п - предел выносливости образцов с данной шероховатостью поверхности.

Например, установлено, что при грубом шлифовании предел выносливости детали из стали с пределом прочности 1500 МПа оказывается таким же, как у стали с пределом прочности 750 МПа. Влияние состояния поверхности детали на сопротивление усталости обусловлено высоким уровнем напряжений от изгиба и кручения в наружных зонах детали и ослаблением поверхностного слоя вследствие его шероховатости и разрушения кристаллических зерен при резании.

По аналогичным формулам определяются пределы выносливости деталей при действии касательных напряжений.

Условия прочности при симметричном цикле переменных напряжений имеют вид:

при действии нормальных напряжений

при действии касательных напряжений

где п σ , п τ - коэффициенты запаса прочности по нормальным и касательным напряжениям; σ -1д, τ -1д - пределы выносливости детали; σ а, τ а - амплитуды переменных напряжений; [п σ ], [п τ ] - минимально допустимое значение запаса прочности по нормальным и касательным напряжениям.

При двухосном напряженном состоянии, возникающем в случае одновременного изгиба и кручения или растяжения-сжатия и кручения, запас прочности в расчетном сечении определяется из выражения

Минимально допустимое значение запаса прочности зависит от точности выбора расчетных нагрузок и полноты учета конструктивных, технологических и эксплуатационных факторов, влияющих на предел выносливости детали. В расчетах буровых машин и оборудования на выносливость минимально допустимые значения запасов прочности регламентируются отраслевыми нормами, указанными в табл. 2П приложения.При отсутствии отраслевых норм принимают допустимые запасы прочности [п]= 1,3÷1,5.

При действии асимметричных циклов детали рассчитывают на прочность на основе диаграммы предельных напряжений цикла (рис. 4.7), характеризующей зависимость между предельными напряжениями и средними напряжениями цикла для заданной долговечности. Диаграмма строится по экспериментальным значениям пределов выносливости, полученным для различных средних напряжений цикла. Это требует длительных испытаний по специальной программе. В практических расчетах используются более простые схематизированные диаграммы предельных напряжении, которые строят по экспериментальным значениям предела выносливости симметричного и отнулевого циклов и пределу текучести выбранного материала.

На диаграмме предельных напряжений точка А (0, σ -1) соответствует пределу выносливости симметричного цикла, точка В (σ 0 /2; σ 0) - пределу выносливости отнулевого цикла напряжений. Прямая, проходящая через эти точки, определяет максимальные предельные напряжения, циклов в зависимости от среднего напряжения. Напряжения ниже уровня ABC не вызывают разрушения при числе циклов N 0 , соответствующем базе испытаний. Точки, лежащие выше прямой ABC, характеризуют циклы напряжений, при которых разрушение происходит при числе циклов N

Прямая ABC, ограниченная в верхней части пределом текучести σ т, т. е. сопротивлением пластическим деформациям, называется линией предельных напряжений. Она выражается уравнением прямой, проходящей через две точки А и В с координатами (0, σ -1) и (σ 0 /2; σ 0):

Обозначив получим

При действии касательных напряжений формула (25) примет вид

Коэффициенты φ σ и φ τ характеризуют чувствительность материала к асимметрии цикла напряжений соответственно при действии нормальных и касательных напряжений (принимаются из технической литературы). Если на диаграмме провести из начала координат прямую под углом 45° (биссектрису координатного угла), то отрезок ОВ" == ВВ"-ВВ" будет соответствовать среднему напряжению, а отрезок ВВ" - предельной амплитуде цикла

где σ а - предельная амплитуда цикла, т. е. амплитуда напряжения, соответствующая пределу выносливости при заданном среднем напряжении цикла.

При увеличении среднего напряжения цикла σ т предел выносливости σ т ах возрастает, а предельная амплитуда цикла σ а уменьшается. Степень ее уменьшения зависит от чувствительности материала к асимметрии цикла, характеризуемой коэффициентом φ σ .

Таблица 4.6

Вид деформации

Предел прочности σ b , МП а

Изгиб и растяжение (φ σ)

Кручение (φ τ)

Циклы, имеющие одинаковые коэффициенты асимметрии, называются подобными и обозначаются на диаграмме предельных напряжений точками, лежащими на одном луче, проведенном под соответствующим углом β. Это видно из формулы

Экспериментально установлено, что отношение предельных амплитуд гладких образцов и образцов с концентрацией напряжений не зависит от среднего напряжения цикла. Согласно этому, коэффициенты концентрации напряжений принимаются одинаковыми для симметричных и асимметричных циклов, а продольная амплитуда напряжений для детали определяется по формуле

Максимальное предельное напряжение асимметричных циклов

Диаграмма предельных напряжений детали, показанная на рис. 4.8, используется для определения запасов прочности. Пусть напряжения (σ max , σ a , σ m ) действуют на деталь в точке М. Если ожидаемые перегрузки соответствуют условию простого нагружения, т е. происходят при постоянной степени асимметрии (R = const), то предельное напряжение для рассматриваемого цикла будет в точке N и запас прочности

В результате совместного решения уравнений линий предельных напряжений АС и ON определяются ордината точки N и запас прочности при действии нормальных напряжений

(29)

Аналогично при действии касательных напряжений

Если при перегрузках среднее напряжение не изменяется (σ m = const), а амплитуда растет, т. е. рабочие напряжения возрастают по прямой М" Р, то запас прочности

Детали буровых машин обычно работают в условиях простого нагружения, и запас прочности следует рассчитывать по формулам (29) и (30). При совместном действии нормальных и касательных напряжений запас прочности определяется по формуле (24).

Расчеты на выносливость при нестационарном нагружении базируются на следующих предположениях. Пусть нагрузки Р 1 , P 2 ,..., P i (или напряжения σ 1 , σ 2 , ….σ i ) действуют соответственно в течение N 1 ….N 3 ....N i циклов нагружения (рис. 9). Отношение фактического числа циклов N i действия некоторого напряжения σ i - к числу циклов N j при котором образец разрушается под действием того же напряжения σ i называют цикловым отношением.

Согласно гипотезе о суммировании усталостных повреждений, действие каждой группы нагрузок не зависит от порядка их чередования и одинаковые цикловые отношения различных по величине перегрузок вызывают одинаковую степень

усталостного повреждения.

В предположении линейного накопления усталостных повреждений

где а - экспериментально устанавливаемый коэффициент, принимаемый (в запас) равным единице.

При принятых обозначениях уравнение кривой выносливости 1 (рис. 9) имеет вид:

где σ R - предел выносливости при базовом числе циклов N 0 .

На основе принятых предположений нестационарное нагружение заменяют некоторым эквивалентным стационарным нагружением, действие которого эквивалентно фактическому нестационарному нагружению. В практике применяются различные варианты приведения нестационарного нагружения к эквивалентным стационарным нагружениям.

Любую из действующих нагрузок P i (чаще P max) или вызываемое ею напряжение σ i (σ max) принимают постоянной, действующей в течение соответствующего уровню нагружения так называемого эквивалентного числа циклов N 3 . Тогда, принимая, например, напряжение равным σ max , на основании формул (32) и (33) получим (а = 1)

(35)

где - коэффициент режима нагрузки.

Из формулы (35) следует, что при эквивалентном числе циклов N э

В другом варианте приведения нестационарное нагружение заменяют режимом с постоянным эквивалентным уровнем нагружения Р э (σ э), который действует в течение заданного срока службы, определяемого суммарным числом циклов ΣN i или числом N 0 , соответствующим точке перегиба кривой выносливости. Согласно этому

откуда выводится формула в следующем удобном для расчетов виде:

(37)

где - коэффициент эквивалентности.

Для расчета коэффициента эквивалентности используются статистические данные о величине нагрузок, возникающих в детали в процессе эксплуатации, и количестве циклов их повторения в продолжение одного блока нагружения, соответствующего бурению одной типовой скважины. Практически значения коэффициентов эквивалентности изменяются в пределах 0,5 ≤ К 0э ≤ 1.

При расчете по касательным напряжениям значение коэффициента эквивалентности К 0э определяются по формуле (36), в которой нормальные напряжения заменяются касательными, вызванными, передаваемыми крутящими моментами.

Запасы прочности при нестационарном нагружении определяются по формулам:

для симметричных циклов переменных напряжений

для асимметричных циклов переменных напряжений

Следует отметить, что величины коэффициентов эквивалентности зависят от проходки на долото, механической скорости бурения и других показателей, определяющих загрузку и оборачиваемость буровых машин и оборудования. При увеличении проходки на долото уменьшается загрузка подъемного механизма. На буровые насосы и ротор аналогично влияет повышение скоростей бурения. Это указывает на необходимость уточнения коэффициентов эквивалентности при существенных изменениях показателей бурения.

Определение исходных данных для расчетов на выносливость элементов трансмиссий . При расчетах на выносливость используется закон линейного накопления повреждений при многократном воздействии на элементы трансмиссий амплитуд разных уровней.

Определение исходных расчетных данных сводится к расчету эквивалентных нагрузок в виде произведения принимаемой в расчет основной нагрузки на коэффициент долговечности.

Эквивалентная нагрузка - это такая нагрузка, действие которой по эффекту накопления повреждений эквивалентно действию реальной нагрузки.

Методики для определения эквивалентных нагрузок элементов трансмиссий, базируются на следующих основных положениях.

1. Эксплуатационная нагруженность трансмиссий определяется средним значением
и коэффициентом вариации v крутящего момента, статистическое распределение амплитуд которого можно считать усеченным нормальным.

2. В качестве средней нагрузки
принимается крутящий момент в силовой цепи к органу, соответствующий реализации устойчивого момента M y двигателей.

3. Допустимой считается динамичность нагрузок для трансмиссии наиболее нагруженного органа, оцениваемая коэффициентом вариации v ≤ 0,6. При значениях v 0,6 следует принимать меры по его снижению, например, применять демпфирующие устройства и др.

Численные значения коэффициентов вариации v можно определять по расчетным зависимостям, либо по результатам вычислительного эксперимента, либо по данным экспериментальных исследований машин-аналогов.

Здесь - максимальный длительно действующий момент; - максимальная длительно действующая амплитуда крутящего момента;Р дл - максимальная длительно действующая нагрузка на подшипники, определяемая по М дл.

Значения коэффициентов долговечности определяются по зависимостям.

1. Для расчета зубьев колес на выносливость:

контактную

изгибную для деталей с твердостью поверхности НВ > 350

изгибную для деталей с твердостью поверхности НВ < 350

2. Для расчета валов:

на изгибную выносливость

на усталостную прочность при кручении

3. Для расчета долговечности шарико - и роликоподшипников:

Здесь - расчетное число циклов нагружений элементов трансмиссии;п - частота вращения детали, об/мин; Т р - расчетное время работы детали, ч (обычно принимают 5000 ч); N о - базовое число циклов нагружения, принимаемое в соответствии с рекомендациями (см. выше)

Соответствующие коэффициенты эквивалентности, принимаемые в зависимости от v .

При расчетах на выносливость зубьев колес по ГОСТ 21354-87, при определении расчетных напряжений в качестве нагрузки принимают M дл, а при определении:



  • Вычисление силы переменной Напряжение При расчете прочности при переменных напряжениях прочность детали обычно оценивается по значению фактического запасного коэффициента Р, сравнивается с допустимым запасным коэффициентом , установленным нормой, условие прочности записывается n> . Коэффициенты запаса Р, например, можно определить приближенно, используя схематический вид предельной амплитуды. 460.6 во-первых, найти коэффициент запаса для гладкой стандартной

выборки, а не фактической части. Внешняя нагрузка предполагает, что рабочий цикл, в котором определяется коэффициент запаса, и соответствующий предельный цикл изменяются аналогичным образом. Из источника диаграммы (см. диаграмму. 460,6) нарисуйте луч 01 под углом а, определенным{§а= -, где АА и-амплитуда и среднее напряжение рабочего цикла. Точка M на прямой с координатами AA и at, характеризует рабочий цикл. Точка N координат l 18 заказ ha 1037 549i putt характеризует предельное значение того же цикла. Таким образом, значение коэффициента запаса p можно определить

как (W Соотношение сегментов. Если луч 01 пересекает прямую линию AB, то увеличение напряжения цикла вызовет усталостное разрушение Людмила Фирмаль

образца. Коэффициент запаса прочности при усталостном разрушении в этом случае выражается в n#, где точка N находится на прямой AB и удовлетворяет уравнению (18.11). 0_1=аш+п^а,(18.13) Откуда ПДж= (18.14) Получен коэффициент запаса для гладкого образца. Прочность детали зависит от размера и формы детали, состояния ее поверхности. Все это учитывается соответствующим коэффициентом, эффективным коэффициентом концентрации напряжений ka, коэффициентом поверхностной чувствительности p, масштабным коэффициентом EE. Чтобы получить показатель предельной амплитуды соответствующей части, необходимо

уменьшить предел выносливости в симметричном цикле-?- Раз,или,что то же самое, раз увеличение амплитуды напряжения рабочего цикла АА, то формула(18.13)примет вид Коэффициент запаса детали равен следующим значениям (18.15)) (18.16) Обратите внимание, что вы используете if вместо figure. 460, Б) применять дополнительно упрощенные схемы, построенные на основе двух точек(рис. 460, а), в Формуле (18.16) изменяется только угловой коэффициент f прямой AB. В этом случае вам нужно взять Если балка 01 пересекает прямую линию, то повышенные циклические напряжения выводят деталь из строя из-за появления в ней пластической деформации. 550коэффективность запаса, относительно предела текучести указывается l и рассчитывается по формуле Антитела Золото= —- - И Шах. КТГ АА+~Т (18.17) Для деталей из

  • высокопрочной стали отказ может произойти из-за снижения статической прочности из-за концентрации напряжений. Такой случай возможен, когда коэффициент асимметрии близок к единице. Коэффициент маржи в этом случае определяется по формуле Д. В. д (18.18) Где ов-предел прочности при растяжении; о-напряжение, определяемое без учета концентрации; — коэффициент,учитывающий снижение статической прочности за счет концентрации напряжений, эффективный статический коэффициент концентрации напряжений. Приведенный выше расчет относится к случаю одноосного напряженного состояния. Для плоского или объемного напряженного состояния задача оценки прочности гораздо сложнее. Теория прочности, разработанная и хорошо проверенная экспериментами

при постоянном напряжении, не применима непосредственно к случаю флуктуирующего напряжения. В настоящее время эта проблема не была удовлетворительно решена. На практике в расчетах используются следующие зависимости в плоских напряженных состояниях, которые характеризуются нормальным напряжением o и касательным напряжением t: (18.19) Здесь p-коэффициент запаса, необходимый для плоского напряженного состояния, PA, p~ — в предположении, что только нормальное напряжение o или тангенциальное напряжение действуют соответственно по уравнению (18.16). Зависимость (18.19) подтверждается некоторыми экспериментами. Он также расширяет третьей теории прочности (теория максимальных касательных напряжений) в случае стрессов и Т

изменения в симметричном цикле в один этап.Он используется в случае отсутствия фазовых изменений в Восемнадцать* 551 из уравнения (18.19) является требуемым Людмила Фирмаль

коэффициентом запаса (18.20)) П р и М Е Р1. Поршневые трубчатые пальцы двигателя нагружаются силой Р, изменяющейся от Р=6000 кг до Р= — 2000 кг. Механические характеристики материала поршневого пальца: предел текучести = = = 10 000 кг/см2 предел прочности на растяжение AB = 8000kpsm2, симметричный цикл o предел выносливости,*=5000kpsm2, нулевой цикл a o-7500kg / см2 Внешняя поверхность пальцев отполирована. Коэффициент поверхностной чувствительности p=1; масштабный коэффициент E0=0,9; эффективный коэффициент концентрации напряжений& = 1,1. Определите запас прочности при усталостной нагрузке. Для риса. 463 показана схема передачи усилия к пальцу и находится на схеме. 463, б-график изгибающего момента. 1г (1=30mm0=5 0мм И (1=30 мм / Рис,

463А. < При изгибе конструкция сечения равна ^изг-2а+2)~Б ‘ 2 4~ = ~ (4 — 1 , 2 5) = 1,375 П. Момент сопротивления секции г — (вперед)! =2 ‘ 44cm3- 552 максимальные и минимальные значения изгибающего момента: Mi zgtah=1,375 Rtah=1,375-6000=8250 кг-см\Mizgtk1=1,375 rt1p=1,375 (-2000)= — 2750 кг-см. Максимальное и минимальное нормальное напряжение тока OTA= = 3380KPCM^-, M izg GP1P pip C / _ _ 2750 -2.44 Из Кпсм2. Амплитуда и среднее значение напряжения рабочего цикла °тахометра stt1p2 °a zzzo — ^и zo)=2255 кг / см2. тонна STT a x H~A gtnp Два. =338°+0^2.130)=P25kg1smg. Определим предельное значение напряжения нулевого цикла: амплитудное и среднее * А0 Два. Семь тысяч пятьсот Два. =3750kpcm?. Кроме того, создайте диаграмму предельной величины по известным

значениям a_yd d _ ^255 1,1 _ _ п-де. ‘Р е 1125 1л О2’ 4 5 , =68° 1-0, 9. Мы считаем, что рабочий и предельный циклы похожи. Точка M * AA=2720 кг / см с координатами рабочего цикла напряжения? И______5000____ 0,333-1125 + — /Д2+Д2~у(1,23)2+ (4,14)2 — = 1,2.

Многие детали машин в процессе работы испытывают переменные во времени напряжения (чаще циклические): детали кривошипно-шатунного механизма, ось транспортного средства, валы редукторов и т.д. Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит. Пример - проволока. Число циклов до разрушения зависит от материала и амплитуды напряжений и меняется в широких пределах. Разрушение материала при действии переменных напряжений называется усталостью.

Рассказать о механизме разрушения. Он носит местный характер. Накопление усталостных повреждений приводит к образованию макротрещины. К разрушению приводит развитие усталостной трещины.

Чаще всего встречается и наиболее опасен для материала гармонический закон изменения напряжений. Цикл напряжений характеризуется следующими параметрами:

Максимальные и минимальные напряжения цикла;

Среднее напряжение цикла

Амплитуда цикла: ;

Коэффициент асимметрии цикла:

Рисунок 1. Характеристики цикла напряжений

Такой цикл называется симметричным.

Такой цикл называется пульсирующим.

Все термины и определения справедливы и для переменных касательных напряжений, если заменить на.


Предел выносливости

Для расчетов на прочность при переменных напряжениях необходимо знать механические характеристики материалов, которые определяются путем специальных испытаний. Берется гладкий полированный стержень круглого сечения и длиной. Его подвергают симметричному циклу при различных амплитудах. Дать схему испытательной машины и методику проведения испытаний. Образец доводят до разрушения и определяют число циклов до разрушения. Полученная кривая называется кривой усталости или кривой Велера. (рисунок 2).

Рисунок 2. Кривая усталости

Эта кривая примечательна тем, что, начиная с некоторого напряжения, она идет практически горизонтально. Это значит, что при напряжениях меньших некоторого предельного напряжения образец может выдержать бесчисленное множество циклов.

Максимальные переменные напряжения, который материал способен выдержать без разрушения, при любом числе циклов, называют пределом выносливости и обозначают.

Опыты обычно производят до базового числа циклов. Для углеродистых сталей принимают, для закаленных сталей и цветных металлов. Опытным путем установлены эмпирические зависимости:

Факторы, влияющие на величину предела выносливости

Предел выносливости деталей зависит не только от свойств материала, но и от их формы, размеров, способов изготовления.

Влияние концентрации напряжений.

В местах резкого изменения размеров ПС детали (отверстия, выточки, галтеки, шпоночные пазы, резьбы) как известно, возникает местное повышение напряжений. Это явление называется концентрацией напряжений. Она снижает детали по сравнению с образца. Это снижение учитывается эффективным коэффициентом концентрации напряжений, который определяется экспериментально. Он равен отношению пределов выносливости гладкого образца к образца с данным концентратором напряжений.

Значения приводятся в справочниках.

Влияние размеров деталей.

Экспериментально установлено, что с увеличением размеров образца, понижается. Влияние размеров образца на учитывается масштабным коэффициентом, который определяется экспериментально и равен отношению

Обычно берут. Они приводятся в справочниках.

Влияние состояние поверхности детали.

Наличие на поверхности детали рисок, царапин, неровностей приводит к уменьшению предела выносливости детали. Состояние поверхности детали зависит от вида механической обработки. Влияние состояния поверхности на величину детали учитывается коэффициентом, который определяется экспериментально и равен:

Этот коэффициент приводится в справочниках.

Все вышеуказанные факторы можно учесть одним коэффициентом изменения предела выносливости.

Тогда предел выносливости детали

Если провести испытание стандартного образца из исследуемого материала в условиях несимметричного цикла напряжений, то получим диаграмму предельных напряжений, показанную на рисунке 3.

Рисунок 3. Диаграмма предельных напряжений

Рассказать о методике проведения испытаний и построения диаграммы.

Эта диаграмма позволяет судить о близости рабочих условий к предельным. Для этого на диаграмму наносится рабочая точка (В)с координатами

где и расчетные значения среднего и амплитудного напряжения в детали. Здесь амплитуда напряжения увеличена с учетом снижения предела выносливости детали. По степени близости рабочей точки к предельной кривой судят об опасности рабочих условий. Если рабочая точка окажется за диаграммой, то непременно произойдет усталостное разрушение.

Построение этой диаграммы требует больших затрат времени и материальных ресурсов. Поэтому реальную диаграмму схематизируют прямой CD. тогда эту диаграмму можно построить без проведения экспериментов.

Определение коэффициента запаса при переменных напряжениях

Коэффициент запаса очевидно равен отношению отрезка ОА к отрезку ОВ (рисунок 3). После геометрических построений получим:

где коэффициент чувствительности материала к ассиметрии цикла.

При действии переменных касательных напряжений

Коэффициенты приводятся в справочниках.

При одновременном действии переменных нормальных и касательных напряжений общий коэффициент запаса